A Framework for Linear and Non-Linear Registration of Diffusion-Weighted MRIs Using Angular Interpolation
نویسندگان
چکیده
Registration of diffusion-weighted magnetic resonance images (DW-MRIs) is a key step for population studies, or construction of brain atlases, among other important tasks. Given the high dimensionality of the data, registration is usually performed by relying on scalar representative images, such as the fractional anisotropy (FA) and non-diffusion-weighted (b0) images, thereby ignoring much of the directional information conveyed by DW-MR datasets itself. Alternatively, model-based registration algorithms have been proposed to exploit information on the preferred fiber orientation(s) at each voxel. Models such as the diffusion tensor or orientation distribution function (ODF) have been used for this purpose. Tensor-based registration methods rely on a model that does not completely capture the information contained in DW-MRIs, and largely depends on the accurate estimation of tensors. ODF-based approaches are more recent and computationally challenging, but also better describe complex fiber configurations thereby potentially improving the accuracy of DW-MRI registration. A new algorithm based on angular interpolation of the diffusion-weighted volumes was proposed for affine registration, and does not rely on any specific local diffusion model. In this work, we first extensively compare the performance of registration algorithms based on (i) angular interpolation, (ii) non-diffusion-weighted scalar volume (b0), and (iii) diffusion tensor image (DTI). Moreover, we generalize the concept of angular interpolation (AI) to non-linear image registration, and implement it in the FMRIB Software Library (FSL). We demonstrate that AI registration of DW-MRIs is a powerful alternative to volume and tensor-based approaches. In particular, we show that AI improves the registration accuracy in many cases over existing state-of-the-art algorithms, while providing registered raw DW-MRI data, which can be used for any subsequent analysis.
منابع مشابه
APPLICATION OF KRIGING METHOD IN SURROGATE MANAGEMENT FRAMEWORK FOR OPTIMIZATION PROBLEMS
In this paper, Kriging has been chosen as the method for surrogate construction. The basic idea behind Kriging is to use a weighted linear combination of known function values to predict a function value at a place where it is not known. Kriging attempts to determine the best combination of weights in order to minimize the error in the estimated function value. Because the actual function value...
متن کاملBuilding an Average Population HARDI Atlas
We present a framework to build a High Angular Resolution Diffusion Image (HARDI) Atlas based on a population of HARDIs from different subjects. The method relies on a non-linear group-wise registration algorithm as well as a set of tools to re-orient the gradient directions of individual subjects and re-interpolate their diffusion weighted signal in a canonical gradient direction set in atlas ...
متن کاملOnline Reconstruction and Motion Detection in HARDI
Introduction: With acquisition protocols such as high angular resolution diffusion imaging, head motion can become an issue. Although the misalignment between diffusion-weighted images (DWIs) can be corrected in a post-processing step [1,2], this might increase partial volume effects, because of the relatively low spatial resolution of DWIs and interpolation in the registration procedure. If ab...
متن کاملNon-rigid Registration of High Angular Resolution Diffusion Images Represented by Gaussian Mixture Fields
In this paper, we present a novel algorithm for non-rigidly registering two high angular resolution diffusion weighted MRIs (HARDI), each represented by a Gaussian mixture field (GMF). We model the non-rigid warp by a thin-plate spline and formulate the registration problem as the minimization of the L2 distance between the two given GMFs. The key mathematical contributions of this work are, (i...
متن کاملNon Uniform Rational B Spline (NURBS) Based Non-Linear Analysis of Straight Beams with Mixed Formulations
Displacement finite element models of various beam theories have been developed traditionally using conventional finite element basis functions (i.e., cubic Hermite, equi-spaced Lagrange interpolation functions, or spectral/hp Legendre functions). Various finite element models of beams differ from each other in the choice of the interpolation functions used for the transverse deflection w, tota...
متن کامل